Zepeda-Ortega, Ángeles-Castro, and Carrillo-Murillo: Infraestructura portuaria y crecimiento económico regional en México

Infraestructura portuaria y crecimiento económico regional en México

Port infrastructure and regional economic growth in Mexico


Palabras clave:

Keywords:


Introducción

En México a partir de 1993 inició la administración de los puertos con participación de capital privado con el objetivo de mejorar su organización, eficiencia y eficacia, esto los convierte en áreas de oportunidad para la atracción y aplicación de inversiones en infraestructura como terminales e instalaciones logísticas, así como en negocios portuarios, comerciales e industriales (Paredes, 2007).

Los puertos son de suma importancia ya que se constituyen como puntos de enlace para el flujo de mercancías. A través de los puertos mexicanos se transporta alrededor de un tercio del total de la carga del país, además, durante el periodo 1996-2013, la importación y exportación de mercancías por vía marítima aumentó un promedio anual de 29% y 1.8%, respectivamente (Inegi, 2014). Este contraste también se observa en el crecimiento del país y, particularmente, de algunas regiones. En 2013, el PIB per cápita de las regiones más rezagadas representó alrededor de 7% del PIB per cápita más alto. Esto obliga a buscar la explicación de estas discrepancias regionales y su relación con la dotación de infraestructura.

Aunque existe una amplia literatura, todavía hay poco consenso sobre los efectos exactos de la inversión en infraestructura de transporte y el desarrollo regional( Chandra y Thompson, 2000 y Deng et al., 2014). El debate sigue siendo polémico, los estudios previos han dado diferentes resultados debido a las fuentes de los datos, la desagregación y la especificación del modelo. En la mayoría de los casos, los resultados demuestran un impacto positivo y significativo, pero en otros estudios se concluye que es insignificante o significativamente negativo.

Esta controversia se amplía ya que existe consenso de que para desarrollar una economía la inversión en infraestructura es una condición necesaria, pero la conclusión de los impactos positivos de la misma ha sido debatida por el problema de la causalidad inversa (IFMO, 2007). Por otra parte, en el plano regional: cuando la infraestructura de transporte es muy pequeña, su mejora sirve para construir una red básica de vínculos; pero en regiones bien dotadas, la necesidad de una nueva inversión y su posible impacto son cuestionadas (IFMO, 2007). Esto nos conduce a preguntarnos si la infraestructura de transporte puede tener un grado de eficiencia en su impacto.

Este estudio aporta a este debate, se enfoca particularmente en el efecto de la infraestructura portuaria en México, en contraste con los estudios efectuados sobre China (Zhang, 2008, Hong et al., 2011 y Song y Geenhuizen, 2014) eque demuestran que las regiones portuarias presentan mayor crecimiento que las regiones interiores; en México, la situación es inversa, lo que hace peculiar este estudio. Además se incluye la consideración del hinterland portuario, bajo el argumento de que la infraestructura de los puertos beneficia no sólo a una región, sino puede dispersarse hacia otras. Se integra en el análisis una propiedad de las redes de transporte (el origen-destino) para posteriormente incluirla dentro de la función de producción, lo que permite, según la teoría neoclásica, explicar la relación existente entre la inversión en infraestructura portuaria y el crecimiento económico en el plano regional mexicano.

La metodología se basa en un panel de datos considerando los beneficios que éste brinda en el análisis de los sistemas de transporte (Paaswell, 1997). Este análisis abarca 17 entidades federativas con litoral en México durante el periodo 1996-2013, debido a que se ha considerado que entre 1993 y 1996, la operación portuaria sufrió cambios en su modelo de administración, lo que permite construir un panel más homogéneo. Se analizan modelos econométricos de efectos fijos y efectos aleatorios en tiempo y en grupo: esta metodología permite explicar el impacto en el crecimiento regional vinculado con la inversión en infraestructura portuaria a través del stock físico histórico, el cual se define mediante el Índice de Infraestructura Portuaria. Finalmente, se identifican las regiones más rezagadas de México y se determina que la infraestructura portuaria de estas regiones constituye uno de los factores que limita su crecimiento y explica el rezago regional existente.

El estudio está organizado de la siguiente forma: en la sección dos se realiza una revisión de la literatura y se presenta la situación actual de la infraestructura portuaria en México y el crecimiento económico del país. En la sección tres se explican la metodología a emplear, la fuente de datos y la construcción del panel de datos. Se revisan varios modelos econométricos que permiten observar la dimensionalidad del conjunto de datos y la relación de largo plazo de las variables.

Los resultados obtenidos después de analizar los efectos fijos y los aleatorios, tanto temporales como regionales de los datos y sus pruebas de cointegración se reportan en la sección cuatro. Asimismo, los resultados de la regresión cuadrática sobre los efectos de los diferentes valores de infraestructura portuaria y el crecimiento regional. Se presentan las conclusiones en las que se demuestra la relación positiva de las variables y se realizan recomendaciones que se derivan de estos resultados.

1. Revisión de la literatura

El papel de la infraestructura como motor del crecimiento económico puede explicarse teóricamente al considerarla como un stock de capital. Éste se puede incorporar como una entrada de la función de producción y de esta manera determinar la relación entre la infraestructura y el crecimiento económico (Barro, 1988). Los estudios previos han mostrado que existen efectos directos e indirectos en esta relación (Aschauer, 1998, Paredes, 2007) y que existe una influencia positiva entre ambas variables (Berechmanet et al.et al., 2006; Lall, 2007; Singh y Bhanumurthy, 2014). En el caso particular de la infraestructura de transporte, ha sido considerada como “fundamental” (Aschauer, 1989) para fomentar el crecimiento económico, y diversas investigaciones han encontrado efectos positivos significativos (Ashauer, 1998; Moomaw y Williams, 1991; Garcia-Milà y McGuire, 1992; Fujita et al., 2001; Rietveld y Nijkamp, 1992; Démurger, 2001; Cantos et al., 2005; Ozbay et al., 2007; y Hong et al., 2011); sin embargo, sus resultados presentan variaciones. Por ejemplo, Ashauer (1998) encontró que entre la infraestructura y el crecimiento existía una elasticidad de 0,39 a 0,56, los resultados de Garcia-Milà y McGuire presentan elasticidadde 0,04 (Garcia-Milà y McGuire, 1992), mientras que algunos otros (Evans y Karras, 1994; Chandra y Thompson,2000) encontraron poca evidencia para apoyar algún valor e incluso una hipótesis sobre esta relación.

El análisis mediante la función de producción, aplicando el concepto de accesibilidad (Johansson, 1993), demostró que ésta es un beneficio del transporte, lo que es posible determinar a través de la interacción espacial (Lakshmanan et al., 2001). Este último concepto permitió comprobar que el beneficio es una derrama de efectos espaciales y temporales (Berechman et al.,2006). En esta línea, se intentó explicar la relación a través de un modelo espacial cuadrado y se encontró que la densidad de las carreteras tenía efectos de derrama u onda regional en otros factores como los precios y la actividad económica, aunque no fue posible determinar su participación a través del tiempo (Wu y Gopinath, 2008).

Desde la perspectiva regional, la influencia del transporte en la productividad local también ha sido estudiada. Recientes investigaciones encontraron que la magnitud de la aportación del transporte en el crecimiento depende de la cantidad y calidad de la infraestructura existente: para el caso de China, cuando la densidad de carreteras es menor que 0,17 km/km2, la relación es insignificante, para la densidad entre 0,17 y 0,38 km/km2 el impacto positivo fue de 0,23, pero al superar la última densidad, el impacto se redujo a 0,09. En una primera provisión básica de infraestructura de transporte ésta no constituye una red, y por tanto no actúa como motor de la economía local, por otro lado, por encima del valor superior, los efectos positivos tienden a reducirse significativamente (Deng et al., 2014).

Entre los estudios relativos a los puertos se encontró evidencia de su impacto sobre el crecimiento económico regional de las provincias portuarias de China (Hong et al.,2011 y Song y Geenhuizen, 2014), mediante la aplicación de un modelo de regresión linealy un panel de datos se encontraron elasticidades de 0,13 a 0,19 y de 0,54 a 0,81, respectivamente. El análisis mostró que la distribución de la infraestructura de transporte espacialmente es una causa importante de las distorsiones económicas entre las regiones chinas. Asimismo, demostró que mayor infraestructura de carreteras incrementa el impacto regional de los puertos debido a su accesibilidad.

Respecto de la metodología a emplear en el análisis empírico para determinar las relaciones entre inversión, infraestructura y crecimiento económico, se han usado las series de tiempo y los cortes transversales (Yoo, 2006). Para la evaluación de los impactos de los sistemas de transporte, los paneles han sido más frecuentemente utilizados debido a que pueden proveer información de cómo los miembros del panel o subconjuntos de ellos, responden o han respondido a cambios en la variable y cómo pesan los factores que influyen en su respuesta (Paaswell, 1997). Una de las ventajas de los paneles es la posibilidad de capturar el cambio de comportamiento en el tiempo, así como medir los componentes de cambios individuales y los agregados, lo cual quedó demostrado después de analizar 60 estudios empíricos en los que se emplearon paneles de datos en diferentes disciplinas (Raimond y Hensher, 1997).

En cuanto al análisis en el plano regional, los paneles de datos han sido empleados para examinar el papel de la infraestructura en el crecimiento ya que permite un análisis tanto temporal como espacial, con resultados satisfactorios para estudios sobre China (Mody y Wang, 1997; Démurger, 2001; Zhang, 2008; Hong et al.,2011; Deng et al., 2014) e India (Singh y Bhanumurthy, 2014).

En el caso particular de México, el estudio del impacto de la inversión pública en infraestructura sobre el crecimiento, empleando un modelo neoclásico, demostró que las inversiones son condiciones insuficientes, ya que se debe complementar con políticas que incrementen el financiamiento, el uso de la infraestructura, así como la eficiencia en la aplicación de los recursos públicos (Aschauer, 1998). Particularmente la infraestructura de transporte resultó estar más relacionada con el crecimiento en las regiones económicas intermedias y no así en las pobres (Looney y Frederiksen, 1981). Al estudiar la disparidad del sureste mexicano, se demostró que el acceso a mercados a través de mejoras en la infraestructura de transporte que vincula áreas urbanas benefician la productividad regional (Deichmann et al., 2004); sin embargo, el estudio de la infraestructura portuaria mexicana en el plano regional continua abierto.

1.1. Infraestructura portuaria en México

En 1993, se inició una etapa de restructuración del sistema portuario mexicano con la integración de capital privado en la inversión física y en la administración de los puertos. Esta inversión ha generado la expansión de la infraestructura portuaria hasta llegar a las condiciones actuales.

En 2013, el sistema portuario mexicano estaba conformado por 102 puertos y 15 terminales fuera de puerto, 58 en el Pacífico y 59 en el Golfo de México y el Caribe; 69 eran para tráfico de altura y cabotaje y 48 únicamente de cabotaje como se aprecia en el mapa 1. De los 102 puertos, 64 funcionan bajo un régimen de concesión: 31 puertos entregados a 16 sociedades mercantiles (Administración Portuaria Integral) para el uso, aprovechamiento y explotación de los bienes y la prestación de los servicios respectivos, tres a entidades paraestatales turísticas, 24 a gobiernos estatales, cinco a gobiernos municipales y un puerto privado. La federación mantiene la administración de 38 puertos (SCT, 2013).

Mapa 1

Puertos y terminales del Sistema Portuario Mexicano y tipo de administración

2448-6183-est-17-54-00339-gf1.gif

Fuente: SCT (2013)

El sistema portuario movilizó 288 millones de toneladas de carga total en 2013. En la década de 1996 a 2006 presentó un incremento de 31% (3.3% anual), mientras que entre 2007 y 2013 aumentó 5.7% (0.9% anual), pese al retroceso sufrido en 2009. La participación de cada uno de los 102 puertos localizados en 17 entidades federativas, se observa en la tabla 1.

Tabla 1

Puertos mexicanos de acuerdo con su ubicación (litoral y entidad federativa), la composición de su tráfico comercial (internacional o nacional) y su participación en la carga general

2448-6183-est-17-54-00339-gt1.jpg

[i] Fuente: elaboración propia con datos de Inegi (2013) y SCT (2013).

En 2006, la carga comercial representó 43% y la petrolera 57%, mientras que en 2013, 58% y 42%, respectivamente. En el periodo de 2007 a 2013 el volumen transportado mediante cabotaje (trafico nacional corto) se redujo en 3.8%, (-0.63% anual) para participar del total de carga en 25.2%, mientras que el volumen transportado en viaje de altura se incrementó 1.95% (0.32% anual) para lograr una participación de 74.8%. El volumen de altura se repartió 63% para los puertos del golfo y 37% para los del pacífico, mientras el cabotaje se repartió 75% y 25% a través del golfo y pacífico, respectivamente.

Existen diferencias en el aprovechamiento y operación de los distintos puertos. En 2013, sólo nueve puertos concentraron 84% del total de carga: en el Golfo de México, el puerto de Cayo de Arcas 22.2% (Campeche), Veracruz 9.5% (Veracruz), Coatzacoalcos 10.1% (Veracruz), Altamira 7.1% (Tamaulipas), Tuxpan 5.3% (Veracruz) y Punta Venado 3.8% (Quintana Roo), en tanto que en el pacífico, Lázaro Cárdenas 11.6% (Michoacán), Manzanillo 11.1% (Colima) e Isla Cedros 3.5% (Baja California Sur).

La carga contenerizada aumentó 59.2% en el periodo 2007-2013 (9.9% anual). En 2013 representó 13.8% del total de carga movida a través de los puertos mexicanos (incluyendo petróleo) concentrándose en el puerto de Manzanillo con más del doble de contenedores desplazados respecto a sus competidores Lázaro Cárdenas y Veracruz. En cuanto al tráfico de buques y transbordadores los puertos del estado de Quintana Roo concentran 22.9%. En el arribo de cruceros, 89,9% de operaciones y movimiento de pasajeros se concentran en Quintana Roo (68.7%), Baja California Sur (16.1%) y Yucatán (5.1%).

1.2. Crecimiento económico y regiones

El Inegi (2010) presentó una división geográfica del territorio mexicano en siete regiones considerando sus similitudes en características históricas, sociales, culturales y socioeconómicas, que sin embargo poco aporta para comprender los cambios que persigue este estudio. La discusión acerca de como considerar una región portuaria es amplia (Ducruet, 2009), su cálculo es complejo ya que requiere tomar en cuenta, por un lado, una extensión geográfica y, por el otro, las relaciones entre la región y el puerto tanto positivas como negativas (Paredes, 2007) y las relaciones sistémicas del puerto con otros puertos en la misma región.

Inicialmente, para delimitar la extensión geográfica se utilizarán como regiones de estudio a los estados con litoral que disponen de infraestructura portuaria, considerando que los registros del crecimiento económico en México (PIB) se encuentran agregados por Estados, acotando así las regiones de estudio y su Producto Interno Bruto que se muestran en la tabla 2.

Tabla 2

Producto Interno Bruto de los estados de México con litoral, composición por sector y percápita y su variación en el periodo de análisis(miles de millones de pesos a precios constantes 2008)

2448-6183-est-17-54-00339-gt2.jpg

[i] Fuente: elaboración propia con datos de Inegi (2013).

*PIB per cápita1

*Variación2

* Variación3

Se puede observar que el sector terciario representa en general más de 50% del PIB, excepto para Campeche, el cual presenta una composición atípica debido a la actividad petrolera que es afectada por la volatilidad de los precios del petróleo, razón por la cual, se eliminan del presente análisis los puertos de dicha región (Inegi, 2013).

2. Metodología

2.1. Especificación del modelo

Los estudios anteriores (Garcia-Milà et al., 1996; Aschauer, 1998; Song y Geenhuizen, 2014) han empleado una función de producción tipo Cobb-Douglas donde la inversión en infraestructura es interpretada como un capital privado para el cual se asumen retornos de inversión positivos. Se empleó esta función para probar la infraestructura de transporte marítimo como una entrada de la función de producción y por su facilidad de comparación con otros estudios.

2448-6183-est-17-54-00339-i004.jpg

Donde Yit es la producción de la región i en el momento t una mejora tecnológica que afecta el total de la función, Kit es el stock de capital y Lit la masa laboral respectivos. En cuanto a la masa laboral (Lit), se utilizó la población económicamente activa de la región i en el periodo t, (PEAit).

Para incorporar en esta función el stock de capital, se debe considerar la problemática existente en México respecto a la ineficiencia en la aplicación del capital destinado a la inversión en infraestructura (Aschauer, 1998). En su lugar, se utilizará una variable proxy que permitirá identificar cuantitativamente los elementos de inversión física en infraestructura portuaria existente y compararlos a lo largo del tiempo, que incluirá las mejoras tecnológicas y evitará afectar el cálculo por la ineficiencia en la aplicación del gasto, la cual está presente en los países en desarrollo (Aschauer, 1998) (Ahmed et al., 2013). La variable se ha denominado Factor de Infraestructura Portuaria FIP, y está definida como:

2448-6183-est-17-54-00339-i005.jpg

Otro aspecto que merece atención es el hinterland del puerto, entendido como la zona del mercado de un puerto (Carrillo, 2011) esto es, la zona de influencia de los bienes que pasan a través de un puerto hasta llegar a su destino final. El hinterland del sistema portuario permite delimitar la región portuaria (Ducruet, 2009) y se puede analizar a través de los elementos que lo describen: los modos de transporte, los componentes de red (nodos y enlaces) y actores de oferta y demanda (Carrillo, 2011).

En cuanto al elemento del hinterland correspondiente a los modos de transporte, se ha incorporado en el modelo una variable proxy de conexión intermodal de la región mediante el cálculo de la densidad de infraestructura carretera Dencar. Esto resulta relevante si consideramos que los principales puertos han expandido su área de influencia, entre otros aspectos, debido a su integración con otros modos (lo que para otros puertos puede convertirse en una limitante si el puerto no tiene interconexiones modales de transporte). Estudios recientes han empleado variables proxy para medir cuantitativa y cualitativamente las características de diversos modos de transporte y comparar su impacto en el crecimiento de forma exitosa (Hong et al., 2011 y Song y Geenhuizen, 2014) por lo que siguiendo estos modelos podemos definir para las regiones de México la densidad de carreteras como:

2448-6183-est-17-54-00339-i006.jpg

En cuanto a la oferta y demanda, como una segunda característica del hinterland del puerto (Carrillo 2011), en este estudio se ha propuesto utilizar una variable proxy en forma de coeficiente, el cual separa los efectos de derrama (spillover) económica del puerto sobre otras regiones, del impacto en la propia región donde se ubica el puerto y el cual se ha denominado Coeficiente de regionalización propia del hinterland por su mercado HMK. Se calculó a partir de la construcción de una matriz origen-destino de las mercancías que pasan por cada puerto localizado en cada una de las regiones. Debido a la ausencia de datos históricos, se calculó con valores del 2013 y se consideró estático para todo el periodo4, de la siguiente forma:

2448-6183-est-17-54-00339-i007.jpg

El coeficiente HMK se aplicó para corregir el FIP de cada región como un efecto de concentración sobre la misma región donde se ubica el puerto debido al beneficio obtenido al atender la demanda de uso de la infraestructura: FIPred= HMKx FIP.

La conectividad, además de referirse a los flujos de mercancía, se refiere al flujo internacional de personas. Siguiendo el criterio de Song y Geenhuizen (2014), los efectos de la infraestructura aeroportuaria disponible en la región se integraron al modelo con una variable referente al número de salidas de vuelos internacionales comerciales regulares realizados en los aeropuertos de la región (SAL) (Song y Geenhuizen, 2014). La función de producción de la región i en el momento t, está definida como:

2448-6183-est-17-54-00339-i008.jpg

Los parámetros de estimación pueden ser obtenidos mediante la linealización de la función de producción en términos logarítmicos, y así determinar la elasticidad de cada regresor de la siguiente forma:

2448-6183-est-17-54-00339-i009.jpg

2.2. Datos

Se tabuló un panel de datos con los indicadores de 17 regiones portuarias de México y registros temporales de 1996 a 2013. El PIB regional (Y), presentado en la tabla 2, fue calculado a precios constantes de 2008 a partir de los datos publicados por el Inegi (2014). En la tabla 3se presentan los valores adimensionales del Factor de Infraestructura Portuaria (FIPred) y del Coeficiente de regionalización propia del hinterland (HMK) determinados para cada región tras revisar las características de infraestructura disponibles en cada uno de los 102 puertos con la información del Catastro Portuario Nacional (SCT, 2015) y la información geográfica de las regiones proporcionada por el Inegi (2013).

Tabla 3

Factor de Infraestructura Portuaria (FIP) y Coeficiente de regionalización propia del hinterland por su mercado (HMK) de cada región

2448-6183-est-17-54-00339-gt3.jpg

[i] Fuente: elaboración propia con datos de SCT(2015).

El incremento promedio anual del PIB y del FIB de las regiones de estudio se muestra en el mapa 2 y mapa 3, respectivamente, en donde se observa que algunas regiones han realizado incrementos en su infraestructura mientras que otras, como Veracruz, relativamente no han aumentado significativamente su infraestructura en el periodo 1996-2013.

Mapa 2

Variación porcentual anual del PIB

2448-6183-est-17-54-00339-gf2.jpg

Fuente: elaboración propia con datos de Inegi (2014).

Mapa 3

Variación porcentual anual del FIP

2448-6183-est-17-54-00339-gf3.gif

Fuente: elaboración propia con los valores determinados en la tabla 3.

En la tabla 4, se muestra la estadística descriptiva de las variables del modelo: PIB (millones de pesos), FIPred (adimensional), Dencar (km/10,000km2), SAL (número de vuelos anuales), PEA (número de personas). La densidad de infraestructura carretera y las salidas internacionales de cada región se obtuvieron de estadísticos del sector transporte elaborados por la SCT (2013), por su parte la población económicamente activa se obtuvo de los registros de Inegi (2013).

Tabla 4

Estadística descriptiva de los valores de la región portuaria empleados en el modelo

2448-6183-est-17-54-00339-gt4.jpg

[i] Fuente: elaboración propia empleando Stata 13.

Se aplicó a los datos la prueba de raíz unitaria bajo el criterio de Levin-Lin-Chu (Levin et al., 2002) y la prueba de cointegración tipo Engle Granger para garantizar la fiabilidad de los resultados de la regresión.

Los resultados de la primera muestran que el logaritmo de las variables del modelo no contiene raíces unitarias en niveles con un rezago y son estacionarias, excepto el factor de infraestructura (FIPred) que no es estacionario. En cuanto a la segunda prueba, el panel se encuentra cointegrado, por lo tanto, los datos tienen relación de largo plazo. Los resultados se muestran en la tabla 5.

Tabla 5

Resultados de la prueba de raíz unitaria y de la prueba de cointegración

2448-6183-est-17-54-00339-gt5.jpg

[i] Fuente: elaboración propia con los resultados de Stata 13.

3. Resultados

Se realizó un análisis del panel mediante tres modelos: mínimos cuadrados ordinarios, efectos aleatorios y efectos fijos para determinar los coeficientes de las variables, sus resultados se presentan en la tabla 6.

Tabla 6

Resultados de la regresión del panel de datos obtenidos mediante los modelos OLSDV, Efectos fijos y Efectos aleatorios sobre los grupos regionales

2448-6183-est-17-54-00339-gt6.jpg

[i] Fuente: elaboración propia

*9.895

Se resalta que todas las regiones presentan un intercepto en el PIB positivo y estadísticamente significativo lo que nos refiere a que el modelo es consistente. Además, se realizó un análisis desagregando los coeficientes del modelo para observar los valores de los interceptos para cada una de las regiones estatales, esto mediante un modelo de mínimos cuadrados ordinarios con variables dummies dicótomas (OLSDV por sus siglas en inglés).

Al aplicar la prueba que Breusch y Pagan formularon como Prueba del Multiplicador de Lagrange se encontró que sí existen efectos aleatorios, no obstante, al realizar la prueba de Hausman, se comprobó que el modelo más satisfactorio es el de Efectos fijos. Dentro de los modelos analizados, el modelo de efectos aleatorios de tiempo no presenta resultados consistentes, por lo que no se considera adecuado aplicarlo. Posteriormente, se realizó una regresión de mínimos cuadrados ordinarios empleando variables dummies interactivas para obtener los efectos desagregados por cada región de las variables explicativas sobre la dependiente los cuales se encuentran en la tabla 7.

Tabla 7

Efectos desagregados regionales de las variables explicativas sobre la dependiente

2448-6183-est-17-54-00339-gt7.jpg

[i] Fuente: elaboración propia con los resultados obtenidos del panel de datos integrado.

Los coeficientes desagregados del FIPred obtenidos mediante la regresión (dummies interactivas) de la tabla 7, representan el Impacto Marginal del FIP en el PIB (IMFP) desagregado por región. Con estos, se realizó un análisis de regresión cuadrática a fin de determinar si diferentes condiciones de infraestructura portuaria están relacionados con su impacto en el PIB mediante el modelo: 2448-6183-est-17-54-00339-i017.jpg. Los resultados se presentan en la tabla 8.

Tabla 8

Datos y resultados de la regresión no lineal entre el Factor de infraestructura portuaria promedio de las regiones (FIPredPROM) y el Impacto del FIP sobre PIB (IMFP)

2448-6183-est-17-54-00339-gt8.jpg

[i] Fuente: elaboración propia con resultados obtenidos empleando el software Eviews 7 y Stata versión 13.

La ecuación que define la relación entre el IMFP y el FIP promedio tiene la forma IMFP = -0,2550 FIP2 + 0,012 FIP. Al trazar los resultados en la gráfica 1, se observa que a medida que el valor de infraestructura portuaria (FIPred) crece, el impacto marginal sobre el PIB también lo hace hasta cierto valor, a partir del cual empieza a decrecer. Los resultados de la regresión son altamente significativos.

Grafica 1

Regresión lineal entre el FIP y el Impacto del FIP en el PIB

2448-6183-est-17-54-00339-gf4.gif

Fuente: elaboración propia a partir de los resultados del análisis del panel de datos.

3.1. Discusiones

Los resultados obtenidos para los tres modelos (tabla 6) son consistentes entre sí: las variables relevantes tienen coeficientes positivos con alta significancia y valores similares entre los modelos.

La infraestructura portuaria disponible (LnFIP), la red de infraestructura carretera (LnDencar) y la población económicamente activa (LnPEA) tienen influencia positiva con el PIB de las regiones mexicanas, y son estadísticamente significativas a 99%, mientras que la interconectividad aérea internacional no resulta estar relacionada con el PIB regional porque no es estadísticamente significativa a niveles convencionales. Esta última conclusión resulta consistente con los resultados obtenidos en otras investigaciones (Hong et al., 2011). Un incremento marginal de uno por ciento en el FIP puede influenciar un aumento de 0.18 a 0.20 por ciento en el PIB de la región, mientras que una adición de uno por ciento en la densidad carretera (DenCar) ceteris paribuspodría provocar 0.23 a 0.26 por ciento adicional de PIB. La PEA influye altamente en el PIB regional con valores de coeficientes de la regresión de 0.82 a 0.86.

La influencia regional de la infraestructura de un puerto es afectada por las condiciones de uso generadas por la demanda de servicio de transporte. Queda mostrado que el hinterland portuario afecta la influencia económica regional local del puerto y sitúa los beneficios de la infraestructura portuaria a otras regiones.

A partir de los interceptos (modelo OLSDV) positivos y altamente significativos (con niveles de significancia de 95 y 99%) se aprecia que existe una magnitud de actividad económica positiva al inicio del periodo de estudio, lo que permite afirmar que el modelo es consistente: Baja California Sur (BCS) y Tabasco serían las regiones que corresponden a los valores de intercepto mayores. En el caso de Tabasco, esto se puede explicar por su relación con la actividad petrolera, en cuanto a BCS, mientras que su sector primario y secundario aportan poco más de 28% del PIB del estado, solamente dos actividades del sector terciario: Hotelería con servicios de alimentos y bebidas y los Servicios inmobiliarios y alquileres representaron 26% del PIB.

3.2. Efectos de la infraestructura portuaria por regiones

Los efectos desagregados de cada una de las variables explicativas sobre la dependiente en el plano regional se colocaron en la tabla 7 y en su mayoría resultan altamente significativos y positivos.

Al analizar los desagregados del FIPred, todos son positivos, y las variables no desagregadas mantienen sus coeficientes positivos y altamente significativos, lo que nos permite afirmar que la infraestructura portuaria influye en el crecimiento económico en el plano regional. Los coeficientes de la regresora FIPred, resultan con menor valor para los estados de Guerrero, Colima, Oaxaca, y Chiapas y carecen de significancia estadística para los tres primeros. Las regiones para las cuales un incremento marginal de la infraestructura portuaria tiene su mayor influencia sobre el PIB económico de la región resultaron BCS (0,71), Tabasco (0,69) y Jalisco (0,48).

Los puertos más importantes de México por su volumen de carga tienen influencia positiva y significativa en el desarrollo regional, con impactos marginales de 0,39 para la región de Michoacán (puerto de Lázaro Cárdenas), 0,36 para la región de Tamaulipas (puerto de Altamira), 0,21 para la región de Veracruz, (puerto de Veracruz y Coatzacoalcos). El efecto desagregado del FIB en el PIB de la región de Colima no tiene significancia estadística; este resultado hace difícil afirmar algo sobre el crecimiento económico regional del estado vinculada alos cambios en infraestructura que el puerto de Manzanillo ha tenido a lo largo del periodo de estudio. No obstante, en la última década Colima ha tenido un aumento en el PIB de 66%, cuya composición ha variado reduciendo la participación del sector primario y secundario en 6.4% que ha pasado al sector terciario, particularmente al sector comercio y al sector transportes quienes participaron en 2013 con el 17.0% y 11.9% del PIB regional, respectivamente.

Al desagregar la densidad carretera (Dencar), los coeficientes tienen un comportamiento poco claro ya que presentan influencias significativas tanto positivas como negativas, y algunos casos no significativos. Colima, Tabasco y Jalisco son los estados con mayor densidad carretera, sin embargo esta característica parece no influir en su crecimiento regional, ya que presentan coeficientes negativos en este análisis, mientras que las regiones donde los incrementos marginales en densidad carretera tienen mayor influencia positiva en el incremento del PIB son Chiapas, Oaxaca y Michoacán, los cuales son tres de los cuatro estados con menor PIB per cápita del país, esto implica que en los estados más pobres los incrementos en infraestructura brindan mayores beneficios marginales.

En general el número de vuelos (SAL) considerado como una variable proxy de la interconectividad internacional, tiene poca influencia con el PIB regional, encontrándose valores opuestos, de baja significancia y de baja contribución, particularmente se observa que los coeficientes no significativos corresponden a los estados de Chiapas, Guerrero y Oaxaca. El mayor impacto de las salidas internacionales aéreas en el PIB, se observa para las regiones Baja California Sur y Quintana Roo, las cuales son regiones turísticas cuyo aforo es mayoritariamente internacional y el estado de Tabasco que tiene participación en la actividad petrolera. No obstante, los resultados encontrados con esta variable no son contundentes.

Se puede observar que todos los coeficientes desagregados de la variable PEA son altamente significativos. La PEA tiene influencia positiva, con un valor que va de un 0,04 a 0,19, sobre el PIB regional. Quintana Roo y Baja California Sur presentan la influencia más pequeña y junto con Colima que presenta una relación negativa, son estados en donde el saldo migratorio es positivo con incremento en la población desocupada (Inegi, 2014). Los coeficientes más altos corresponden a Guerrero, Chiapas, Jalisco, Michoacán y Oaxaca donde el saldo migratorio es negativo.

Conclusiones

La disponibilidad de infraestructura portuaria tiene una influencia positiva en el crecimiento económico regional. La influencia de la infraestructura portuaria no sólo depende de su disponibilidad, sino que es afectada por el uso y aprovechamiento, el cual es determinado por la demanda de servicios de transporte. Por ello, la dotación de infraestructura portuaria debe estar vinculada con proyectos y políticas públicas que fomenten explotación, uso económico y beneficio social de las infraestructuras. Las regiones que presentan el menor Factor de infraestructura portuaria al mismo tiempo figuran entre las de PIB más bajo: Chiapas, Oaxaca y Guerrero. Diversas regiones de litoral mexicano cuentan con infraestructura portuaria menor cuyo incremento marginal podría brindar elementos de accesibilidad y conectividad lo que permitiría determinar nuevos patrones de movilidad, flujos comerciales, así como localizaciones industriales y residenciales con impacto económico regional mayor. Al mismo tiempo la inversión marginal concentrada en algunos grandes puertos no resulta proporcional a los impactos generados en el crecimiento, lo que agrava la disparidad regional. Este resultado es consistente con estudios similares (IFMO, 2007; Deng et al., 2014).

Con el desarrollo del intermodalismo y la mejora operativa, la región espacial de influencia de los grandes puertos se amplió, las regiones portuarias originales se rompieron a favor de un hinterland común competido por varios puertos simultáneamente en la medida en que los modos de transporte lo permiten: Jalisco uno de los estados con el FIP más bajose sirve del hinterland portuario del estado de Colima, por su parte, Veracruz, quien posee el FIP más grande, compite con Colima y Michoacán, por brindar servicios a las regiones centraleseincorporarlas a su hinterland.

En cuanto a la diferencia geográfica o el tipo de tráfico entre los puertos del Pacífico y del Golfo de México y Mar Caribe y alguna posible relación entre ésta y su crecimiento económico, se realizaron análisis econométricos con los tres modelos sin encontrar resultados consistentes y significativos que puedan sugerir una relación o merezcan su mención. No obstante, sería recomendable profundizar el estudio con otras metodologías. Al respecto, también resulta importante desagregar el presente estudio para obtener una visión más detallada y amplia de la influencia de los puertos no sólo en el crecimiento sino en las variables que describen el desarrollo regional cuyo entendimiento permita comprender más ampliamente los beneficios regionales y que permita orientar las decisiones de inversión en infraestructura con un enfoque social.

Por otro lado, una ampliación en el periodo de análisis de la presente investigación anterior a 1996 puede brindar elementos para una comprensión más efectiva que valore los resultados brindados por la privatización portuaria.

Fuentes consultadas:

1 

Ahmed, Vaqar, Abbas Ahsan y Saira Ahmed (2013), “Public infrastructure and economic growth in Pakistan: a Dynamic CGE-Microsimulation Analysis”, en John Cockburn, Yazid Dissou, Jean Yves Duclos y Luca Tiberti (eds.), Infrastructure and Economic Growth in Asia,Springer Cham Heidelberg, New York, Estados Unidos de América, pp. 117-143.

Vaqar Ahmed Abbas Ahsan Saira Ahmed 2013Public infrastructure and economic growth in Pakistan: a Dynamic CGE-Microsimulation Analysis John Cockburn Yazid Dissou Jean Yves Duclos Luca Tiberti Infrastructure and Economic Growth in Asia,Springer Cham HeidelbergNew YorkEstados Unidos de América117143

2 

Aschauer, David (1998), “The role of public infraestructure capital in mexican economic growth”, Economía Mexicana, Nueva Epoca, VII (1), Centro de Investigación y Docencia Económicas, Ciudad de México, México, pp. 47-78.

David Aschauer 1998The role of public infraestructure capital in mexican economic growthEconomía Mexicana, Nueva EpocaVII1Centro de Investigación y Docencia EconómicasCiudad de México, México4778

3 

Aschauer, David (1989), “Is public expenditure productive?” Journal of Monetary Economics, 23 (2), Elsevier, Amsterdam, Holanda, pp. 177-200.

David Aschauer 1989Is public expenditure productive?Journal of Monetary Economics232ElsevierAmsterdam, Holanda177200

4 

Barro, Robert (1988), “Government Spending in a simple model of endogenous growth”, National Bureau of Economic Research, Working Papers núm. 2588, National Bureau of Economic Research, Massachusetts, Estados Unidos de América, pp. 103-125.

Robert Barro 1988Government Spending in a simple model of endogenous growthNational Bureau of Economic Research, Working Papers núm. 2588National Bureau of Economic ResearchMassachusetts, Estados Unidos de América103125

5 

Berechman, Joseph, Ozmen, Dilruba, y Ozbay, Kaan (2006), “Empirical analysis of transportation investment and economic development at state, county and municipality levels”, Transportation, 33 (6), Springer Science+Business Media, New York, Estados Unidos de América , pp. 537-551.

Joseph Berechman Dilruba Ozmen Kaan Ozbay 2006Empirical analysis of transportation investment and economic development at state, county and municipality levelsTransportation336Springer Science+Business MediaNew York, Estados Unidos de América537551

6 

Cantos, Pedro, Mercedes Gumbau-Albert y Joaquín Maudos (2005), “Transport infrastructures, spillover effects and regional growth: evidence of the Spanish case”, Transport Reviews, 25 (1), Taylor & Francis, Abingdon, Reino Unido, pp. 25-50.

Pedro Cantos Mercedes Gumbau-Albert Joaquín Maudos 2005Transport infrastructures, spillover effects and regional growth: evidence of the Spanish caseTransport Reviews251Taylor & FrancisAbingdon, Reino Unido2550

7 

Carrillo-Murillo, David (2011), Demand and supply interactions in transport models: the case of hinterland transportation, Karlsruhe Papers in Economic Policy Research (Book 31), Nomos Publishers, Berlín, Alemania.

David Carrillo-Murillo 2011Demand and supply interactions in transport models: the case of hinterland transportationKarlsruhe Papers in Economic Policy Research (Book 31)Nomos PublishersBerlín, Alemania

8 

Chandra, Amitabh y Eric Thompson (2000), “Does public infrastructure affect economic activity? Evidence from the rural interstate highway system”, Regional Science and Urban Economics, 30 (4), Elsevier, Amsterdam, Holanda , pp. 457- 490.

Amitabh Chandra Eric Thompson 2000Does public infrastructure affect economic activity? Evidence from the rural interstate highway systemRegional Science and Urban Economics304ElsevierAmsterdam, Holanda457 490

9 

Deichmann, Uwe, Marianne Fay, Jun Koo y Somik Lall (2004), “Economic structure, productivity, and infrastructure quality in Southern Mexico”, The Annals of Regional Science, 38 (3), Springer, New York,Estados Unidos de América,pp. 361-385.

Uwe Deichmann Marianne Fay Jun Koo Somik Lall 2004Economic structure, productivity, and infrastructure quality in Southern MexicoThe Annals of Regional Science383SpringerNew York,Estados Unidos de América361385

10 

Démurger, Sylvie (2001), “Infrastructure development and economic growth: an explanation for regional disparities in China?”, Journal of Comparative Economics, 29 (1), Elsevier, Amsterdam, Holanda, pp.95-117.

Sylvie Démurger 2001Infrastructure development and economic growth: an explanation for regional disparities in China?Journal of Comparative Economics29195117

11 

Deng, Taotao, Shuai Shao, Lili Yang y Xueliang Zhang (2014), “Has the transport-led economic growth effect reached a peak in China? A panel threshold regression approach”, Transportation, 41 (3), Springer Science+Business Media, New York, Estados Unidos de América,pp. 567-587.

Taotao Deng Lili Yang Shuai ShaoXueliang Zhang2014Has the transport-led economic growth effect reached a peak in China? A panel threshold regression approachTransportation413Springer Science+Business MediaNew York, Estados Unidos de América567587

12 

Ducruet, César (2009), “Port regions and globalization”, en Theo Notteboom y CésarDucruet, Peter de Langen, (eds.), Ports in Proximity. Competition and Coordination among Adjacent Seaports, Ashgate, Burlington, Estados Unidos de América, pp. 41-53.

César Ducruet 2009Port regions and globalization Theo Notteboom Ports in Proximity. Competition and Coordination among Adjacent SeaportsAshgateBurlington, Estados Unidos de América4153

13 

Evans, Paul y Georgios Karras (1994), “Is government capital productive? Evidence from a panel of seven countries”, Journal of Macroeconomics, 16 (2), Elsevier, Amsterdam, Holanda, pp. 271-279.

Paul Evans Georgios Karras 1994Is government capital productive? Evidence from a panel of seven countriesJournal of Macroeconomics162271279

14 

Fujita, Masahisa, Paul Krugman y Anthony Venables (2001), The spatial economy. Cities, regions and international trade, MIT Press, Massachusetts, Estados Unidos de América.

Masahisa Fujita Paul Krugman Anthony Venables 2001The spatial economy. Cities, regions and international tradeMIT PressMassachusetts, Estados Unidos de América

15 

Garcia-Milà, Teresa, Therese McGuire y Robert Porter (1996), “The effect of public capital in state-level production functions reconsidered”, Reviews on Economics Statistics, 78 (1), Elsevier, Boston, Estados Unidos de América pp. 177-180.

Teresa Garcia-Milà Therese McGuire Robert Porter 1996The effect of public capital in state-level production functions reconsideredReviews on Economics Statistics781ElsevierBoston, Estados Unidos de América177180

16 

Garcia-Milà, Teresa y Therese McGuire (1992), “The contribution of publicly provided inputs to states economies”, Regional Science and Urban Economics, 22 (2), Elsevier, Amsterdam, Holanda, pp. 229-241.

Teresa Garcia-Milà Therese McGuire 1992The contribution of publicly provided inputs to states economiesRegional Science and Urban Economics222ElsevierAmsterdam, Holanda229241

17 

Hong, Junjie, Zhaofang Chu y Qiang Wang (2011), “Transport infrastructure and regional economic growth: evidence from China”, Transportation, 38 (5), Springer, New York,Estados Unidos de América ,pp. 737-752.

Junjie Hong Zhaofang Chu Qiang Wang 2011Transport infrastructure and regional economic growth: evidence from ChinaTransportation385SpringerNew York,Estados Unidos de América737752

18 

IFMO (Institut für Mobilitätsforschung) (2007), Transport, Trade and Economic Growth. Coupled or Decoupled?, Springer Berlín Heidelberg, Berlín, Alemania.

Institut für Mobilitätsforschung 2007Transport, Trade and Economic Growth. Coupled or Decoupled?Springer Berlín HeidelbergBerlín, Alemania

19 

Inegi (Instituto Nacional de Estadística y Geografía) (2014), Anuario estadístico y geográfico de los Estados Unidos Mexicanos 2014, Instituto Nacional de Estadística y Geografía, Aguascalientes, México.

Instituto Nacional de Estadística y Geografía 2014Anuario estadístico y geográfico de los Estados Unidos Mexicanos 2014Instituto Nacional de Estadística y GeografíaAguascalientes, México

20 

Inegi (Instituto Nacional de Estadística y Geografía) (2013) Anuario estadístico de los Estados Unidos Mexicanos 2013, Instituto Nacional de Estadística Geografía e Informática, Aguascalientes, México.

Instituto Nacional de Estadística y Geografía 2013Anuario estadístico de los Estados Unidos Mexicanos 2013Instituto Nacional de Estadística Geografía e InformáticaAguascalientes, México

21 

Inegi (Instituto Nacional de Estadística Geografía e Informática) (2010), Regiones Socioeconómicas de México 2010, Instituto Nacional de Estadística Geografía e Informática, Aguascalientes, México .

Instituto Nacional de Estadística Geografía e Informática 2010Regiones Socioeconómicas de México 2010Instituto Nacional de Estadística Geografía e InformáticaAguascalientes, México

22 

Johansson, Börje (1993), “Infrastructure, accessibility and economic growth”, International Journal of Transport Economics/Rivista internazionale di economia dei trasporti, 20 (2) , Accademia Editoriale, Roma, Italia, pp. 131-156.

Börje Johansson 1993Infrastructure, accessibility and economic growthInternational Journal of Transport Economics202Accademia EditorialeRoma, Italia131156

23 

Lakshmanan, T. R., Peter Nijkamp, Piet Rietveld y Teodoor Verhoef (2001), “Benefits and costs of transport” Papers in Regional Science, 80 (2)Springer-Verlag, Berlín, Alemania, pp. 139-164.

T. R. Lakshmanan Peter Nijkamp Piet Rietveld Teodoor Verhoef 2001Benefits and costs of transportPapers in Regional Science802Springer-VerlagBerlín, Alemania139164

24 

Lall, Somik (2007), “Infrastructure and regional growth, growth dynamics and policy relevance for India”, The Annals of Regional Science, 41 (3), Springer Berlin Heidelberg, Berlín, Alemania, pp. 581-599.

Somik Lall 2007Infrastructure and regional growth, growth dynamics and policy relevance for IndiaThe Annals of Regional Science413Springer Berlin HeidelbergBerlín, Alemania581599

25 

Levin, Andrew, Lin Chien-Fu, Chu y Chia-Shang James (2002), “Unit root tests in panel data: asymptotic and finite-sample properties”, Journal of Econometrics, 108 (1), Elsevier BV, North-Holland, Holanda, pp. 1-24.

Andrew Levin Lin Chien-Fu,Chu Chia-Shang James 2002Unit root tests in panel data: asymptotic and finite-sample propertiesJournal of Econometrics1081Elsevier BVNorth-Holland, Holanda124

26 

Looney, Robert y Peter Frederiksen (1981), “The regional impact of infrastructure investment in México”, Regional Studies, 15 (4), Routledge, London, Reino Unido, pp. 285-296.

Robert Looney Peter Frederiksen 1981The regional impact of infrastructure investment in MéxicoRegional Studies154RoutledgeLondon, Reino Unido285296

27 

Moomaw, Ronald y Martin Williams (1991), “Total factor productivity growth in manufacturing, further evidence from the States”, Journal of Regional Science, 31 (1), Wiley-Blackwell, Pennsylvania, Estados Unidos de América, pp. 17-34.

Ronald Moomaw Martin Williams 1991Total factor productivity growth in manufacturing, further evidence from the StatesJournal of Regional Science311Wiley-BlackwellPennsylvania, Estados Unidos de América1734

28 

Mody, Ashoka y Wang Fang-Yi (1997), “Explaining industrial growth in coastal China: economic reform and what else?”, World Bank Economic Review, 11 (2), Oxford University Press, Oxford, Reino Unido, pp. 293-325.

Ashoka Mody Wang Fang-Yi 1997Explaining industrial growth in coastal China: economic reform and what else?World Bank Economic Review112Oxford University PressOxford, Reino Unido293325

29 

Ozbay, Kaan , Dilruba Ozmen-Ertekiny, Joseph Berechman (2007), “Contribution of transportation investments to county output”, Transport Policy,14(4), Elsevier, England, Reino Unido, pp. 17-329.

Kaan Ozbay Dilruba Ozmen-Ertekiny Joseph Berechman 2007Contribution of transportation investments to county outputTransport Policy144ElsevierEngland, Reino Unido17329

30 

Paaswell, Robert (1997), “Why Panels for Transportation Planning?” en Golob, Thomas; Kitamura, Ryuichi y Long, Lyn (eds.), Panels for Transportation Planning, Springer Science and Business Media, New York, Estados Unidos de América, pp. 3-14.

Robert Paaswell 1997Why Panels for Transportation Planning? Thomas Golob Ryuichi Kitamura Lyn Long Panels for Transportation PlanningSpringer Science and Business MediaNew York, Estados Unidos de América314

31 

Paredes, Víctor (2007), Privatización de Puertos en México. Reformas y Mercados de Servicios Portuarios, Centro de Investigación para el Desarrollo, Ciudad de México, México.

Víctor Paredes 2007Privatización de Puertos en México. Reformas y Mercados de Servicios PortuariosCentro de Investigación para el DesarrolloCiudad de México, México

32 

Raimond, Timothy y David Hensher (1997), “A Review of Empirical Studies and Applications”, en Thomas Golob, Ryuichi Kitamura y Lyn Long (eds.), Panels for Transportation Planning, Springer Science and Business Media, New York, Estados Unidos de América, pp. 15-72.

Timothy Raimond David Hensher 1997A Review of Empirical Studies and Applications Thomas Golob Ryuichi Kitamura Lyn Long Panels for Transportation PlanningSpringer Science and Business MediaNew York, Estados Unidos de América1572

33 

Rietveld, Piet y Peter Nijkamp (1992), “Transport and regional development”, Research Memorandum,núm 50, Serie Research Memoranda, VU University Amsterdam, Amsterdam, Holanda, pp. 1-21.

Piet Rietveld Peter Nijkamp 1992Transport and regional developmentResearch Memorandum,núm 50University AmsterdamAmsterdam, Holanda121

34 

SCT (Secretaría de Comunicaciones y Transportes) (2015), “Catastro Portuario Nacional”, Secretaría de Comunicaciones y Transportes, Ciudad de México, México, <SCT (Secretaría de Comunicaciones y Transportes) (2015), “Catastro Portuario Nacional”, Secretaría de Comunicaciones y Transportes, Ciudad de México, México, http://www.sct.gob.mx/puertos-y-marina/puertos/catastro/ >, 4 de enero de 2015.

Secretaría de Comunicaciones y Transportes 2015Catastro Portuario NacionalSecretaría de Comunicaciones y TransportesCiudad de México, MéxicoSCT (Secretaría de Comunicaciones y Transportes) (2015), “Catastro Portuario Nacional”, Secretaría de Comunicaciones y Transportes, Ciudad de México, México, http://www.sct.gob.mx/puertos-y-marina/puertos/catastro/ 4 de enero de 2015

35 

SCT (Secretaría de Comunicaciones y Transportes) (2014), Prontuario del Servicio de Transporte Marítimo Regular entre México y el Mundo 2014, Secretaría de Comunicaciones y Transportes, Ciudad de México, México .

Secretaría de Comunicaciones y Transportes 2014Prontuario del Servicio de Transporte Marítimo Regular entre México y el Mundo 2014Secretaría de Comunicaciones y TransportesCiudad de México, México

36 

SCT (Secretaría de Comunicaciones y Transportes) (2013), Anuario estadístico del sector 2013, Secretaría de Comunicaciones y Transportes, Ciudad de México, México .

Secretaría de Comunicaciones y Transportes 2013Anuario estadístico del sector 2013Secretaría de Comunicaciones y TransportesCiudad de México, México

37 

Singh, Prakash y N. R. Bhanumurthy (2014), “Infrastructure development and regional growth in India” en Ambar Ghosh y Asim Karmakar (eds.), Analytical Issues in Trade, Development and Finance, Springer, New Delhi, India, pp. 321-341.

Prakash Singh N. R. Bhanumurthy 2014Infrastructure development and regional growth in India Ambar Ghosh Asim Karmakar Analytical Issues in Trade, Development and FinanceSpringerNew Delhi, India321341

38 

Song, Lili y Marina van Geenhuizen (2014), “Port infrastructure investment and regional economic growth in China. Panel evidence in port regions and provinces”, Transport Policy, 36, Elsevier, England, Reino Unido , pp. 173-183.

Lili Song Marina van Geenhuizen 2014Port infrastructure investment and regional economic growth in China. Panel evidence in port regions and provincesTransport Policy36ElsevierEngland, Reino Unido173183

39 

Wu, JunJie y Munisamy Gopinath (2008), “What causes spatial variations in economic development in the United States?”, American Journal of Agricultural Economics, 90 (2), Oxford University Press, Oxford, Reino Unido ,pp. 392-408.

JunJie Wu Munisamy Gopinath 2008What causes spatial variations in economic development in the United States?American Journal of Agricultural Economics902Oxford University PressOxford, Reino Unido392408

40 

Yoo, Seung-Hoon (2006), “Seaport infrastructure investment and economic growth in Korea”, International Journal of Critical Infrastructure, 2 (1), Elsevier, Amsterdam, Holanda, pp. 1-9.

Seung-Hoon Yoo 2006Seaport infrastructure investment and economic growth in KoreaInternational Journal of Critical Infrastructure21ElsevierAmsterdam, Holanda19

41 

Zhang, Xueliang (2008), “Transport infrastructure, spatial spillover and economic growth. Evidence from China” Frontiers of Economics in China, 3(4), Springer Publishing,Berlín, Alemania, pp. 585-597.

Xueliang Zhang 2008Transport infrastructure, spatial spillover and economic growth. Evidence from ChinaFrontiers of Economics in China34Springer PublishingBerlín, Alemania585597

Notes

[9] En miles de pesos

Notes

[10] Variación promedio anual del PIB calculada de 2003 a 2013.

Notes

[11] Variación promedio anual del PIB per cápita de 1996 a 2013.

Notes

[12] Constituye una limitación importante de este estudio, ya que no permite observar los efectos temporales del hinterland y la infraestructura, pero permite obtener un primer acercamiento sobre el comportamiento de las variables en estudio. Esto abre una posibilidad para una investigación posterior más amplia.

Notes

[13] La diferencia entre los coeficientes de la prueba Haussman no resulta sistemática.



This display is generated from NISO JATS XML with jats-html.xsl. The XSLT engine is libxslt.

Enlaces refback

  • No hay ningún enlace refback.




Economía, Sociedad y Territorio, Vol. XVII, núm. 54, mayo-agosto de 2017, es una publicación cuatrimestral editada por El Colegio Mexiquense A.C. Exhacienda Santa Cruz de los Patos, s/n, col. Cerro del Murciélago, Zinacantepec, C.P. 51350, México, tel. (722) 279 99 08 ext. 183, http://est.cmq.edu.mx/index.php/est/index, est@cmq.edu.mx Editora responsable: Verónica Vega Rocha. Reservas de derechos al uso exclusivo núm. 04-2016-042513474700-203 ISSN electrónico 2448-6183. Responsable de la última actualización de este número: Verónica Vega Rocha, fecha de última modificación: 1 de mayo de 2017.

Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación.

Revista Economía, Sociedad y Territorio por El Colegio Mexiquense A.C., se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional.

Colegio Mexiquense30 años Colegio MexiquenseEST RevistaLicencia Creative CommonsOpen Access
Avisos Contacto