Defining city boundaries through percolation theory: the case of the mexican urban system
PDF
XML

Palabras clave

Cities
boundaries
metropolitan
percolation
fractal dimension

Cómo citar

Tapia-McClung, R., Montejano-Escamilla, J. A., & Caudillo-Cos, C. A. (2023). Defining city boundaries through percolation theory: the case of the mexican urban system. Economía Sociedad Y Territorio, 23(73), 753–778. https://doi.org/10.22136/est20232087

Resumen

We applied an emerging methodology involving percolation theory and fractal dimension to the Mexican national road network to determine cities’ boundaries in a more automated and less subjective manner. The percolated network at the distance where the maximum fractal dimension occurs, corresponds to actual built-up environmental data derived from different sources. The relationship between the critical point of the system and what is defined as urban, seems promising for defining city limits, metropolitan or functional urban areas, and dynamics related to people concentration in geographies.

https://doi.org/10.22136/est20232087
PDF
XML

Citas

Aguilera Ontiveros, Antonio (1999), “Ciudades fractales y telarañas urbanas”, Vetas, Revista de El Colegio de San Luis, 1 (2), San Luis Potosí, El Colegio de San Luis, pp. 49-59, <https://acortar.link/fadlLo>, April 6th, 2021.

Anzaldo, Carlos (2019), “Hacia una revisión de los municipios centrales de las zonas metropolitanas de México”, in Isela Orihuela, (coord.), Dinámicas Metropolitanas, Ciudad de México, Instituto de Investigaciones “Dr. José María Luis Mora”-Consejo Nacional de Ciencia y Tecnología, pp. 35-107.

Arcaute, Elsa; Molinero, Carlos; Hatna, Erez; Murcio, Roberto; Vargas-Ruiz, Camilo; Masucci, Paolo and Batty, Michael (2016), “Cities and regions in Britain through hierarchical percolation”, Royal Society Open Science, 3 (4), London, Royal Society, 150691, doi: https://doi.org/10.1098/rsos.150691

Batty, Michael and Longley, Paul (1994), Fractal cities: a geometry of form and function, London, Academic Press.

Batty, Michael and Xie, Yichun (1996), “Preliminary evidence for a theory of the fractal city”, Environment and planning A: economy and Space, 28 (10), London, Sage Journals, pp. 1745-1762, doi: https://doi.org/10.1068/a281745

Benguigui, Lucien; Czamanski, Daniel; Marinov, Maria and Portugali, Yuval (2000), “When and where is a city fractal?”, Environment and Planning B: Planning and Design, 27 (4), London, Sage Journals, pp. 507-519, doi: https://doi.org/10.1068/b2617

Bettencourt, Luis; Lobo, José; Helbing, Dirk; Kühnert, Christian and West, Geoffrey (2007), “Growth, innovation, scaling, and the pace of life in cities”, Proceedings of the National Academy of Sciences, 104 (17), Washington D. C., National Academy of Sciences of the United States of America, pp. 7301-7306, doi: https://doi.org/10.1073/pnas.0610172104

Cabral, Pedro; Augusto, Gabriela; Tewolde, Mussie and Araya, Yikalo (2013), “Entropy in urban systems”, Entropy, 15 (12), Basel, Multidisciplinary Digital Publishing Institute, pp. 5223-5236, doi: https://doi.org/10.3390/e15125223

Cao, Wenpu; Dong, Lei; Wu, Lun and Liu, Yu (2020), “Quantifying urban areas with multi-source data based on percolation theory”, Remote Sensing of Environment, vol. 241, Minnesota, Elsevier, 111730, doi: https://doi.org/10.1016/j.rse.2020.111730

Chen, Yanguang and Huang, Linshan (2018), “Spatial measures of Urban Systems: from Entropy to Fractal Dimension”, Entropy, 20 (12), vol. 991, Basel, Multidisciplinary Digital Publishing Institute, pp. 5223-5236, doi: https://doi.org/10.3390/e20120991

Chen, Yanguang; Wang, Jiejing and Feng, Jian (2017), “Understanding the fractal dimensions of urban forms through spatial entropy”, Entropy, 19 (11), vol. 600, Basel, Multidisciplinary Digital Publishing Institute, doi: https://doi.org/10.3390/e19110600

Conapo (Consejo Nacional de Población) (2012, 2018), “Sistema Urbano Nacional”, Ciudad de México, Conapo, <https://bit.ly/2XHQ1mf>, July 24th, 2020.

Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V., and Böhner, J. (2015), “System for Automated Geoscientific Analyses (SAGA) v. 2.1.4”, Geoscientific Model Development, 8 (7), Munich, Copernicus Publications, pp. 1991-2007, doi: https://doi.org/10.5194/gmd-8-1991-2015

Dice, Lee R. (1945), “Measures of the amount of Ecologic Association between Species”, Ecology, 26 (3), Washington D. C., Ecological Society of America, pp. 297-302, doi: https://doi.org/10.2307/1932409

Florczyk, Aneta; Corban, Christina; Ehrlich, Daniele; Carneiro, Sergio; Kemper, Thomas; Maffenini, Luca et al. (2019), “GHSL Data Package 2019”, Luxembourg, Publications Office of the Europen Union, doi: https://doi.org/10.2760/290498

Foody, Giles M. (2020), “Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification,” Remote Sensing of Environment, vol. 239, Minnesota, Elsevier, 111630, doi: https://doi.org/10.1016/j.rse.2019.111630

Grimmett, Geoffrey (1999), “What is percolation?”, in Geoffrey Grimmet, Percolation. Grundlehren der mathematischen Wissenschaften, vol. 321, Hiedelberg, Springer, pp. 1-31, doi: https://doi.org/10.1007/978-3-662-03981-6_1

Hyseni, Renilda; Nepravishta, Florian and Asanbejlli, Kristalba (2021), “Measuring the complexity of urban form”, International Journal of Ecosystems and Ecology Science, 11 (3), Illinois, IJEES Electronic Journal Publication, pp. 557-568, doi: https://doi.org/10.31407/ijees11.327

Inegi (Instituto Nacional de Estadística y Geografía) (2013), Conjunto de datos vectoriales de Uso del Suelo y Vegetación Escala 1:250000, Serie V (Conjunto Nacional), Aguascalientes, Inegi, <https://bit.ly/3QydK2o>, July 24th, 2020.

Inegi (Instituto Nacional de Estadística y Geografía) (2012), Conjunto de datos vectoriales de Carreteras y Vialidades Urbanas. Edición 1.0, Aguascalientes, Inegi, , February 6th, 2021.

L3Harris Geospatial (2021), Calculate Confusion Matrices, Herndon, L3Harris Geospatial, <https://bit.ly/3BvPzx1>, February 6th, 2021.

Lu, Yongmei and Tang, Junmei (2004), “Fractal dimension of a transportation network and its relationship with urban growth: a study of the Dallas-Fort Worth area”, Environment and Planning B: Planning and Design, 31 (6), London, Sage Journals, pp. 895-911, doi: https://doi.org/10.1068/b3163

Makse, Hernán; Andrade, José; Batty, Michael; Havlin, Shlomo and Stanley, Eugene (1998), “Modeling urban growth patterns with correlated percolation”, Physical Review E, 58 (6), Riverdale, American Physical Society, pp. 7054-7062, doi: https://doi.org/10.1103/PhysRevE.58.7054

Mandelbrot, Benoit (1983), The fractal geometry of nature, New York, W. H. Freeman. QGIS Development Team (2020), “QGIS”, versión 3.18, Zurich, QGIS Association, <https://bit.ly/3L7CHjO>, February 6th, 2021.

R Core Team (2020), “R: a language and environment for statistical computing”, versión 4.1.3, Wien, R Foundation for Statistical Computing, <https://bit.ly/3qsc67J>, February 6th, 2021.

Sadeghbeygi, Akram; Moravej, Kamran and Delavar, Mohammad (2021), “Replacing kappa index with quantitative and spatial agreement and disagreement components for the accuracy assessment of different thematic maps”, Scientific-Research Quarterly of Geographical Data, 29 (116), Tehran, National Geographical Organization, pp. 77-87, doi: https://doi.org/10.22131/sepehr.2021.242861

Schiavina, Marcello; Moreno-Monroy, Ana; Maffenini, Luca and Veneri, Paolo (2019), “GHSL-OECD Functional Urban Areas 2019”, Luxembourg, Publications Office of the Europen Union, doi: https://doi.org/10.2760/67415

Sørensen, Thorvald (1948), “A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons”, Biologiske Skrifter, 5 (4), Copenhague, Ejnar Munksgaard, pp. 1-34.

Stauffer, Dietrich and Aharony, Ammon (2018), Introduction to percolation theory, London, Taylor & Francis, doi: https://doi.org/10.1201/9781315274386

Ting, Kai Ming (2010), “Confusion Matrix”, in Claude Sammut and Geoffrey I. Webb (eds.), Encyclopedia of machine learning, Boston, Springer, p. 209, doi: https://doi.org/10.1007/978-0-387-30164-8_157

West, Geoffrey B. (2017), Scale: The universal laws of growth, innovation, sustainability, and the pace of life in organisms, cities, economies, and companies, New York, Penguin Press.

Zarza, Daniel (1996), “Una interpretación fractal de la forma de la ciudad”, Cuadernos de Investigación Urbanística, issue 13, Madrid, Universidad Politécnica de Madrid, pp. 1-77, <https://bit.ly/3L94nVB>, July 24th, 2020.

Zmeskal, Oldrich; Dzik, Petr and Vesely, Michal (2013), “Entropy of fractal systems”, Computers & Mathematics with Applications, 66 (2), Amsterdam, Elsevier, pp. 135-146, doi: https://doi.org/10.1016/j.camwa.2013.01.017

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.